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2D Crystal Shapes, Droplet Condensation, and
Exponential Slowing Down in Simulations of
First-Order Phase Transitions
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Multicanonical ensemble simulations for the simulation of first-order phase
transitions suffer from exponential slowing down. Monte Carlo autocorrelation
times diverge exponentially with free energy barriers AF, which in L? boxes
grow as LY~!. We exemplify the situation in a study of the 2D Ising-model at
temperature 7 /T, = 0.63 for two different lattice manifolds, toroidal lattices,
and surfaces of cubes. For both geometries the effect is caused by discontinuous
droplet shape transitions between various classical crystal shapes obeying geo-
metrical constraints. We use classical droplet theory and numerical simulations
to calculate transition points and barrier heights. On toroidal lattices we deter-
mine finite size corrections to the droplet free energy, which are given by a
linear combination of Gibbs-Thomson corrections, capillary wave fluctuation
corrections, constant terms, and logarithmic terms in the droplet volume.
Tolman corrections are absent. In addition, we study the finite size effects on
the condensation phase transition, which occurs in infinite systems at the
Onsager value of the magnetization. We find that this transition is of discon-
tinuous order also. A combination of classical droplet theory and Gibbs—
Thomson corrections yields a fair description for the transition point and for the
droplet size discontinuity for large droplets. We also estimate the nucleation
barrier that has to be surmounted in the formation of the stable droplet at
coexistence.
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1. INTRODUCTION

First-order phase transitions play an important role in many branches of
physics ranging from the well known liquid vapor transition>? to nuclear
physics,® protein folding™® or even to the symmetry breaking in the early
universe.”® Even for the intensely studied liquid vapor transition there are
still considerable uncertainties in the calculations of the decay rate of
metastable states," partially due to unknown finite size and finite curva-
ture corrections to the free energy and the surface tension of droplets.

The present study uses the two dimensional Ising-model to investigate
the influence of such finite size effects, because it is conceptually simple and
there is a large body of rigorous results, which can be used in the compari-
son to simulation data. The partition function of the Ising-model is given
by

Z=Y e (1.D
conf.
with the Hamiltonian
H=H,—hM:= - s;s5,—h) s, (1.2)
4,y i

where H, contains the usual nearest neighbor interaction and the magneti-
zation M couples linearly to a external magnetic field 2. We use the multi-
canonical sampling method to study the model in the whole magnetization
interval [—L?, L?] at the inverse temperature = 0.7 (corresponding to
T/T.=0.63, with g, =In(1 +ﬁ) /2), which is sufficiently low to pro-
nounce effects due to first-order phase transitions, but still high enough to
use a isotropic surface free energy as a good first approximation. Most of
our efforts will be focused on the magnetic probability distribution

PL(M)=% Y e tis <M—Z s,.>, (1.3)

conf.

which up to a normalization factor equals the restricted partition function
Z(m, L). The distribution P, (M) was already studied in refs. 6-9 with the
aim to understand the dynamics of the decay of a metastable state. Our
goal in this paper is to produce a quantitative description for high resolu-
tion Monte-Carlo data of P,(M) in terms of classical droplet theory,
including the leading finite-size effects.

The paper is organized as follows. In Section 2 we give a brief review
of the multicanonical sampling method and present numerical evidence of
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residual exponential slowing down, due to the singularities associated with
first order phase transitions. We argue that similar limitations are present
in other broad histogram sampling methods. In Section 3 we present the
classical theory for the boundary induced geometric phase transitions in
toroidal and cube-surface geometries. Section 4 discusses the influence of
a variety of possible finite size effects. Section 5 gives a detailed account of
our simulation data for both geometric phase transitions and the droplet
condensation transition, including the analysis of finite size effects. In
Section 6 we conclude our findings.

2. MULTICANONICAL METHOD

Multicanonical (Muca) sampling was invented®!) to eliminate the
exponential slowing down of canonical (Metropolis or heat bath) simula-
tions near temperature- or field-driven first-order phase transitions. At
inverse temperatures f > f§, the magnetic probability distribution P, (M) as
a function of the magnetization M in the Ising-model has two maxima,
which we denote by + M T**, separated by a valley, where the probability is
suppressed by a factor e=#, due to the additional free energy AF ~ oL of
the interface present in the two phase region. Already for moderate system
sizes canonical simulations are not able to sample these exponentially sup-
pressed states and the simulation gets trapped in one of the maxima of
P,(M). Similar problems arise in simulations of spin glasses. The Muca
method remedies this issue by biasing the sampling with a weight factor
P, (M), thereby producing flat histograms.*!® Alternatively one can use
the inverse of the density of states n(E)~"' for a given internal energy E to
enhance the sampling of the suppressed states in energy driven first order
phase transitions. Thus the simulations are performed with an effective
Hamiltonian H,; = H,+ ' In P,(M). Unbiased averages can be cal-
culated via

A —P(H; —Hyy)
(A = oot A€ : @.1)

Zconf e ~PH = Her)

A major practical problem in the application of the method is, that one
needs a fairly good approximation of P, (M) to run a efficient Muca simu-
lation. The determination of an estimate for P,(M) by conventional
importance sampling may consume already large parts of the overall com-
putation time, especially for systems with a rough energy landscape, like
spin-glasses. Recursive schemes have been proposed"? for the cases where
finite size scaling cannot be used to extrapolate P,(M) to large system
size L. Recently several new ideas which tackle this practical problem
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by forcing the simulation into the unfavorable states have been put for-
ward.(IS, 16)

We now want to focus on the performance of the algorithm, supposing
we have the exact probability distribution P; (M) at hand. For this purpose
we study the system size dependence of the autocorrelation time 7, defined
as the mean time needed by the algorithm to go from the left side of the
magnetization range at —M 7™ to the right one at M 7™ and back again.
After transforming away the energy barrier due to the interface we may at
best expect a random walk motion of the algorithm in the magnetization.
A walk between —M and M then takes O(M?) spin flips. With M ~ L? and
the usual definition of Monte-Carlo time in units of L? attempted spin flips
(sweeps) we arrive at T ~ L? for the optimal behavior of 7(L).

The sobering news of Fig. 1—displaying time series for the magneti-
zation M in Muca simulations of the 2D Ising-model at inverse tempera-
ture f§=0.7 on a torus and a cube-surface (see Fig. 5)—is, that the
assumption of random walk like motion in the whole magnetization inter-
val is plainly wrong. For the torus geometry (pbc) one clearly sees that the
interval for the magnetization at least is divided into three sectors with
random walk like behavior, separated by two barriers. For the cube-
surface, which we abbreviate in the sequel as SH (for surface of a hyper-
cube in case d > 2), the presence of barriers is less obvious. An estimate of
the magnitude of barriers can be obtained, if 7 is fitted with the form

T= A,V eR s 2.2)

where the maximal surface 0f2,,,, which determines the exponential
slowing down, is 2L on a toroidal L? box and 4(L—1) on a SH(L) lattice.
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Fig. 1. (a) Time series for magnetizations M in Muca simulations at f#=0.7 on a toroidal
447 lattice as compared to (b) time series for M on a cube-surface SH(20) lattice, which has a
similar volume. The statistics is 5-107 sweeps on the torus and 107 sweeps on the SH lattice.
The horizontal lines for the torus indicate the position of shape transitions.
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Fig. 2. Multicanonical autocorrelation times 7 for the Torus (circles) and SH lattices
(triangles) in the 2D Ising-model at = 0.7 in units of heatbath sweeps as a function of the
box volume V. The plot is double logarithmic. Curves are explained in the text.

The symbol ¢ denotes the surface tension and V' is the volume. We obtain
the values

R=0.121(14) Torus, 2.3)
R=0.031(05) SH, 2.4

from the fits as displayed in Fig. 2. Into the fit enter data, which in the
figure are displayed with solid symbols. The measured R-values are signifi-
cantly smaller than values R ~ 1 as expected for non multicanonical simu-
lations, but clearly indicate the presence of residual exponential slowing
down.

We show, that the barrier on the torus, which leads to a exponential
slowing down, is caused by a geometrically induced first-order transition
from a droplet to a strip domain, whose barrier value can be calculated
using classical droplet theory. The droplet theory result R = 0.1346... agrees
within error bars with the measured value of (2.3). A superficial inspection
of the time series for the cube-surface, see Fig. 1b, might lead to the guess,
that in this case no barriers are present. We will show, that in this case
there is a series of three different discontinuous transitions in-between
phase space regions, where droplets occupy one, two, three and four
corners on the cube-surface. The barrier values are R,;,, =0.02987,
R,;; =0.02977, and R;,, = 0.03441, which all are smaller than correspond-
ing barriers on the torus and, the maximum value R;,, again agrees within
error bars with the measured value cited in (2.4).

Now, as already pointed out by Leung and Zia,"” one could avoid
this type of geometrical phase transitions by simulating the Ising-model on
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the surface of a sphere, and actually the cube-surface may be viewed as a
crude approximation to the sphere. Alas there is no way known to put a
regular lattice of arbitrary volume on the surface of a sphere, but off lattice
simulation of liquid-gas systems could do the job. Are we then able to
achieve random walk like Muca dynamics in the whole interval of magne-
tizations? Our answer to this question still is no, since there is an additional
first-order transition present, namely the droplet condensation phase tran-
sition from a uniform one phase region to the phase separated two phase
region, where we have yet another essential singularity in the free energy.
Here again we find a, albeit much smaller barrier for the Muca simulations,
which is now directly related to the physical nucleation barrier associated
with the formation of a critical nucleus.®' Now, what at first sight just
looks like an embarrassing limitation of the algorithm, at a second thought
gives us interesting information about the droplet condensation phase
transition. In the quantitative analysis of this data Gibbs-Thomson
corrections and other finite size effects will play a prominent role, since the
volume of the coexisting droplet scales for large system sizes asymptotically
as L*? and thereby introduces an additional scale.

Our findings not only are relevant for the algorithmic performance
of Muca simulations, but most likely limit the performance of other broad
histogram methods—like the recently introduced Wang and Landau
density of states sampling method’®—as well, provided the Monte-Carlo
covers a portion of phase space, which contains one of the mentioned sin-
gularities. For purposes of illustration we display in Fig. 3 the magnetiza-
tion density time series obtained from a Wang-Landau broad histogram

m=M/V
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Fig. 3. Time series for magnetization densities m in Wang-Landau density of states simula-
tions at f=0.7 on a toroidal 400 lattice and at f = 1.00007. The simulation slows down at
the position of the droplet condensation phase transition m,,,4, which we study in the present
paper.



2D Crystal Shapes, Droplet Condensation, and Exponential Slowing Down 53

sampling in the magnetization of the 2D Ising-model on a 4007 lattice at
£ =0.7. The value of the Wang-Landau parameter f is f = 1.00007 and
the magnetization density of states is updated with a heat bath algorithm.
The horizontal lines in the figure denote the Onsager value m, and the
position m,4 of the droplet condensation phase transition. The existence
of a barrier is indicated by the presence of flip flops between two different
regions of the phase space, below and above m,,. This exponential
slowing down worsens, if either lattice sizes are increased, or f is tuned to
the value unity.

3. CLASSICAL DROPLETS

Below the critical point the bulk density of the spontaneous magneti-
zation my(T') in a infinite system is given by Onsagers solution,® which at
£ = 0.7 predicts the value m, = 0.99016... for the magnetization density. If
we restrict the mean density of the magnetization to some value in the
interval [—m,, m,] the system separates into two phases with magnetiza-
tions +my(T) divided by an interface. The orientation dependent free
energy of a interface can be obtained from the spin—spin correlation func-
tion via a dual transformation.®” The equilibrium shape of a droplet with
volume Q of the minority phase, embedded in the majority phase, can be
obtained by the celebrated Wulff construction.® The total free energy of
the droplet is given by”

Z,=2,/WQ 3.1)

where

cosh?(2BJ)

W sinh(24J)

=% Oﬁao dx cosh™ [ —cosh(x)} 3.2
is the volume bounded by the Wulff plot of the orientation dependent
surface free energy, and g,(7T) =2J +% In tanh BJ is the free energy of the
(1, 0) surface, which at §#=0.7 has the value g, = 0.89643... . In the pres-
ence of boundaries different equilibrium shapes can occur.® 2 In the case
of a torus with periodic boundary conditions there is a first-order phase
transition from the droplet shape—as given by the Wulff construction—to
a strip with surface free energy X'y = 20, L. The strip is wrapped around the
torus and the transition point is determined by the condition X', = X's. This
was shown rigorously by Shlosman.® Employing numerical integration
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for the integral in Eq. (3.2) one can precisely calculate the transition point
my,s(T), which at § = 0.7 has the value

Mp)s =0.36974.... (3.3)

In our Monte-Carlo data the transition is rounded and shifted due to
several finite size effects, which will be discussed in detail in the next
section.

For the toroidal and cube-surface geometry we calculate in the rest of
this section classical equilibrium shapes and saddle point configurations,
which determine transition points and barrier heights in-between the dif-
ferent phases. For sake of simplicity we use a isotropic surface free energy,
which is still a reasonable approximation at inverse temperature f=10.7
(T /T. = 0.63), where the Monte-Carlo simulations are performed.

Toroidal boxes of linear extent L with periodic boundaries have a
volume V' = L? and without boundaries the equilibrium droplet shape is
just a circle of radius r = ./Q/x, since it minimizes the surface 0Q = ./4nQ2
for a given volume Q. Leung and Zia"'” argued, that the saddle point con-
figuration at the transition is a lens shaped droplet—see Fig. 4a—formed
by two arcs with a base length L. At the transition point my,s/m, =
1—2/x this droplet interpolates in-between a spherical droplet of radius

v/rg 1S[aQD/S—gl_]/zl_
I I I ' T 17 ™17 7 177

A
.

..
o..
| | | O_M | 1 | 1 | 1
-1 0 1 1 1.2 1.4 1.6
x/rg /ey
(a) (b)

Fig. 4. (a) Crystal shapes at the droplet strip transition. With the droplet volume fixed at its
value L?/r at coexistence the circular stable droplet is deformed into the unstable saddle point
lens shaped droplet. (b) The percentile increase of the excess length (0Q,,s—2L)/2L as a
function of of the half base length r/r, in units of r,. At r/r, =n/2 one reaches the saddle
point configuration. The measured data point of (2.4) is plotted with error bars and agrees
with the classical droplet result.



2D Crystal Shapes, Droplet Condensation, and Exponential Slowing Down 55

ro = L/m and the strip. The arc shape again follows from the minimization
of the surface at given droplet volume L*/n. Figure 4b displays the excess
length of the droplet, which is deformed from its spherical shape at
r/r, =1 to the lens shaped saddle point configuration with half base length
value r/r, = /2. The excess surface of the saddle point configuration is!”

09,5 —2L
P T 0.1346... 4
5 0.1346 (3.4)

and we can directly check this value in our Muca simulations, since this
barrier gives the leading exponential contribution to the autocorrelation
time and should equal R of (2.3). The value of the classical excess length is
in fair agreement with the simulation value. Some deviations may come
from the influence of the anisotropy of the surface free energy, which at
B = 0.7 shifts the location of the transition by a few percents.

Cube-surface lattices of parameter value L are 2D lattice manifolds
denoted SH(L), which are identified with the surface of a 3D cube with
linear extend L—1. An example is displayed in Fig. 5, where a SH(5)
lattice with linear extent 4 is represented schematically. A SH(L) lattice
has a volume V' = 6(L—2)?+12(L—2)+8 and there are eight sites on the
corners of the cube, which possess three nearest neighbors instead of four.
A classical droplet configuration at magnetization M = 0 covers four of the
eight corners and has a minimal surface of length 02 = 4(L—1) separating
spin up and spin down domains. A small droplet can lower its surface by
occupying a corner of the cube. With increasing volume it becomes favor-
able to cover two, three and four corners and similar as on the torus there
exist shape transitions in-between states, which occupy one, two, three, and
four corners. Due to our choice of a isotropic surface free energy all equi-
librium droplet shapes consist out of circle segments, which are closed
around the corners. To systematize our considerations we denote the
uniquely defined circle segment of volume 2 and base length b by S(b, 2)
and its arc length by 0Q2(b, Q).

Fig. 5. The SH(5) lattice manifold is identified with the surface of a 5° cubic box with linear
extent 4.
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A droplet located at a corner has the volume Q, = Q[S(b, Q)] —b?*/4
and the surface 0Q, = 0Q(b, 2). Note that the base length itself does not
contribute to the surface 0Q(b, Q) of the droplet. The situation is depicted
schematically in Fig. 6a, where the droplet covers the corner 4 and the base
length has the value b = ﬁ p with p as denoted in the figure. To get the
equilibrium shape at constant volume Q;, we minimize 0Q, with respect
to b. This results in

0Q, = /312, (3.5)

as compared to 0Q = ,/4nS2 for a face centered droplet. Similar considera-
tions apply to two corner droplets and Fig. 6b displays a droplet, which
covers two corners 4 and B. The base length b has the value b= L+2p,
again with p as denoted in the figure. For the non-extremal droplet we
have Q,=Q[S(b, 2)]—L?*/2 and 0Q,=08(b, 2), which again after
minimizing 0£2, with respect to b leads to the surface length

0Q, = /1(2Q, + L?) (3.6)

for the two corner equilibrium droplet of volume Q,. Equating the surfaces
(3.5) and (3.6) we find Q,,, = L? for the droplet volume Q,,,, where the
transition from the one corner to the two corner droplet occurs. To cal-
culate the barrier height at the transition we argue, that the saddle point
configuration between the one corner and the two corner droplet is
reached, when the site b of Fig. 6a occupies an additional corner: the site B

(a) (b)

Fig. 6. Generic droplet shapes on SH lattice for (a) one corner and (b) two corner droplets.
Capital letters denote sites on the corners of the SH lattice, small letters denote sites on the
edges of the cube and greek letters denote sites neither located on edges or corners. Solid lines
of the shapes contribute to the surface 02, broken lines do not. Sites labeled with the same
letter are to be identified.
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Fig. 7. Generic droplet shape on SH lattice for a three corner droplet.

of Fig. 6b. The volume of this droplet is £,,, and its surface has the value
08,/, =02(b= ﬂ L, 3/2L%), leading to a excess length

691/2 _aQI

=0.02987 3.7
4L 3D

normalized with the length 4L of the “strip”” or four corner droplet. Besides
this transition we find two more, from the two corner to the three corner
droplet and from the three to the four corner droplet. To parameterize the
possible shapes of a three corner droplet we introduce the parameter
s = Ad/L as indicated in Fig. 7. We read of the volume of the three corner
droplet

Q,=Q[S(b=L./B+5)+(1—5)2, D1+ L (12 (1-5)(B+s)) (3.8)

and the surface of the droplet is again the arc length 0Q,(b(s), ). Numer-
ical minimization of 02, with respect to s at fixed 2, then gives us the
equilibrium shape with three corners inside. Equating 0Q, =02; and
082, = 082, = 4L we find the volumes Q,,; and Q;,,, where the transitions to
a three corner droplet occur. The actual transition values m, ,, m,,;, and
ms,, are

Mip_2 0 My 1 My a00ag (3.9
mo 39 mo 3’ mO . ceey .

where magnetization densities are given in units of the Onsager value m,.
In Fig. 8 we display the length of classical droplet surfaces as a function of
Q/V for one, two, three, and four corner droplets and transition points are
marked by vertical lines. To determine the energy barriers at the 2/3 and
3/4 transitions we again argue, that for the saddle point configurations one
needs to deform the 3 corner generic droplet shape of Fig. 7 for fixed
volume at coexistence in such a way, that either point d of the figure
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Fig. 8. Classical droplet surfaces 02/V*° on a SH lattice. The curves correspond to one,
two, three and four corner droplets with vertical lines denoting the shape transition points.

collapses onto point A, or that an additional fourth corner is included.
Both of these shapes are contained in (3.8) with s =0 for the volume £, ,
and s = 1 for £, ,. Using these we find for the excess lengths

0Q,,,—0Q,

BT 0.02977... 1
Ty 977 (3.10)

0Q,,, — 00,

T T 0.03441... 11
Ty 0.03 (3.11)

with the largest barrier (3.11) being in fair agreement with the value (2.4)
measured in the simulation.

4. FINITE SIZE CORRECTIONS

In the limit of large box volumes V' and large droplets the overall
magnetization M in the two phase region is created by two areas with
the Onsager value m, for the magnetization density and opposite sign:
M =W —-Q)my—my2 and the droplet volume is a linear function of the

overall density
Q 1 m
—=—(1—-—. 4.1
V.2 < m0> 1)

There exists a variety of finite size effects, which all contribute to the
droplet free energy and potentially modify relation (4.1) for the volume of
the largest minority droplet on finite boxes. Corrections are due to the
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finite curvature of the droplet surface or due to the restrictions posed on
fluctuations by the finite size of the droplet or the box, or by the presence
of several droplets. The literature hosts the following corrections to a single
droplet®”

* Capillary wave corrections of surface string excitations with string
length L contribute In(L) and constant terms to the free energy, ®*?” with
presumably different coefficients in the strip and droplet state.

e Contributions to the free energy due to degeneracies of strip and
droplet states under translations of the lattice cubic group. On a finite 2D
system with pbc a strip has a degeneracy 2L and a droplet L> These
entropic terms yield a contribution of order In(L) to the free energy. We
expect this type of finite size effect to be present only at very low tempera-
tures since the degeneracy is removed by thermal excitations.

e Tolman corrections to the interface tension due to the small radius
of curvature of very minute droplets.®3%

e Gibbs-Thomson corrections®” describing a shift of the bulk mag-
netization due to the presence of curved surfaces.

It is very instructive also, to think of Q of (4.1) as an order parameter
for the formation of an minority droplet of extensive size, which is non-
zero in the two phase region and vanishes for all states with m > |m.
There exists actually then a phase transition associated with this order
parameter, at which point the droplet either evaporates into a gas of
“small” droplets, or the gas condenses. Again for infinite systems the phase
transition is located exactly at the Onsager m, value, but for finite systems
corrections are present. Since all the above mentioned finite size effects
may conspire in the observed shift of the transition it is an interesting and
unsettled issue to study their contributions quantitatively. The droplet
condensation phase transition has recently been studied with Monte-Carlo
simulations of Ising-models with fixed magnetization in two®? and three®®
dimensions. In these studies the size of the largest minority cluster was
measured as a function of temperature, i.e., along paths perpendicular to
those we use, measuring at fixed temperature for various values of the
magnetization. In d = 2 the authors observed a discontinuous condensation
phase transition with finite size effects similar to those of Fig. 17 and
attributed them to the Gibbs-Thomson effect. We will quantify this state-
ment with the following calculations and with the fits of Section 5.3. In
three dimensions the finite size analysis for the size of the largest minority
cluster close to the transition is complicated by the fact, that for small
enough magnetization there is a infinite percolating minority cluster
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present already in the one phase region.®” The precise influence of this fact
at the condensation transition deserves further investigation.

For the description of the condensation phase transition we assume
that the finite box restricted m partition function of a possibly discontinu-
ous transition can be written as

Z(m’ L) j— eiFdroplet(m’ L) + e*Fbulk(m: L)’ (4'2)

up to corrections exponentially small in L,®¥ with F,,, and Fy,,. being
suitable free energies in the one phase (bulk) and the two phase (droplet)
region respectively. In the two phase region we use the classical theory for
a single extensive droplet, as outlined in the preceding section, amended
by Gibbs-Thomson (GT) corrections. The bulk phases are described by
Ginzburg-Landau (GL) theory. The Gibbs-Thomson effect®” accounts for
a finite curvature of the surface of the droplet. Microscopically one can
explain this effect by noting, that the average coordination number of a
spin at a surface with positive curvature is reduced and thereby the rate of
detachment into the phase of opposite sign is enhanced and the other way
round for negative curvature. To lowest order this induces a small shift
Amgr of the magnetization density of equal absolute value in both phases,
but of opposite sign. Conservation of overall magnetization then leads to a
shifted droplet volume

Q 1 m  Amgr
o (1= . 4.3
V 2( my my > “-3)

To calculate Amgy to lowest order we minimize the two phase free energy

Fdroplet =0 +/ 47‘[9 +62V Amé-r, (4.4)

where the first part is the surface free energy of a circular droplet of volume
(size) 2, and the second part is the excess bulk free energy due to the shift
Amgr in an expansion of the Ginzburg-Landau free energy up to second
order around the bulk value F(+m,), which we choose to be zero for
convenience. The coefficient ¢, = 18.1252318487... at f=0.7 is obtained
from the low temperature series expansion results of ref. 36. Minimization
of (4.4) results into Amgr oc 027, i.e., a shift of Amg; proportional to the
curvature of the droplet, which after reinsertion into the free energy leads
to a curvature dependent downward correction to the free energy. The
droplet free energy (4.4) is displayed in Fig. 9 for three different values
of m below m, in close vicinity of m, as a function of the Gibbs—Thomson
shift Amgy, which for each m value in the figure ranges in-between
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Fig. 9. Droplet free energy Fyqy of (4.4) for three m values in vicinity and below m, as a
function of the Gibbs-Thomson shift Amgr with 0 < Amgr < my,—m. With increasing values
of m curves move from above to below. The saddle points of the droplet free energy are
denoted by solid triangles, states with vanishing droplet volume correspond to solid circles.
Curve (b) has a m-value right at the condensation phase transition point.

Amgr =0 and Amgr = my—m. With decreasing distance to Onsagers m,
the stable saddle point solution of situation (a)—as depicted in the
figure—turns into a metastable one (b), which then turns unstable in
situation (c), very close to m,,.

In finite systems the otherwise stable classical minority droplet of the
two phase region becomes metastable at the condensation phase transition
point m 4 (L), where the system performs a finite size rounded transition
into the one phase region. The condensation point shift due to the finite
system size

Amcond (L) =My —Meong (L)’ (45)

corresponds to situation (b) as depicted in Fig. 9 and can be calculated by
equating the free energy

Foue =V ey Ay (4.6)
of the bulk state—the solid circles in Fig. 9—to the saddle point free energy
(4.4) in the two phase region: the solid triangles in Fig. 9. Note that the

surface term in (4.4) depends also on Am, ;. One finds the finite system
condensation phase transition point

Amcoud (L) = A*(:ondl’72/3 (47)
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on toroidal L? boxes. The exponent —2/3 for the finite-size behavior of the
condensation transition was already found before in the context of meta-
stable decay,™® but the inclusion of Gibbs-Thomson corrections lead to a
different value of A.,4. The coefficient 4,4 at f = 0.7 has the value

3
Acond = myn W = 023697., (48)

where parameter values 7 and o are given by

2 q1/3

7= [%] =0.20102... (4.9)
2My

o=W/n=090358.... (4.10)

The droplet size 2., (L) at the condensation phase transition is

vV Amcond (L)

my

and one can also calculate the nucleation barrier B,,;, which at the con-
densation phase transition corresponds to the maximal excess droplet free
energy in-between states at the saddle point and states at Amgy = m,—m.
One finds

B,
— —md  —0.174038... (4.12)
g /4nQ

cxe

in units of the coexisting droplets surface free energy and B,/ Fsopet
=0.154701 in units of the total free energy of the coexisting droplet. The
Gibbs-Thomson corrected droplet looses its stability at the point

Amunstable(L) = m0’761/3(%)2/3 L_2/3 (413)
=0.18808... L™%/3, 4.14)

which inside of the metastable region terminates the droplet metastable
branch. Condensation phase transition point scaling with the power law
L2/ can also be proven with rigorous methods (see ref. 37 for a recent
overview). Furthermore one finds at the condensation phase transition
point the linear relation

Amgr(L) =3 AMong (L), (4.15)
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which expresses the Gibbs—Thomson shift in units of the finite size location
of the phase transition point. This linear relation is especially interesting as
the ratio

_ vV Amcond (L)/2m0

2.0 (4.16)

Q

is predicted to have the value Q =3/2. If one neglects Gibbs—-Thomson
corrections altogether one finds Q = 1. The value of Q does not depend on
the particular values for the surface free energy, nor on the parameter value
¢, (which all factor out in the calculation). A stringent test on the presence
of Gibbs-Thomson corrections thus can be devised, if in the Monte-Carlo
simulation one measures both, the coexisting droplets size Q,,.(L) and
location of the condensation phase transition Am,,4(L).

5. SIMULATION RESULTS

We have simulated the 2D Ising-model at f=0.7 (kz7 =1.428...) on
toroidal lattices and on cube-surface SH(L) lattices. In one set of Muca
simulations we cover all states from the strip to the bulk phase and study
L =12 up to L =44 toroidal L? boxes and cube-surface lattices of param-
eter values L =4 up to L =26. In another set of simulations the condensa-
tion point phase transition is studied on toroidal lattices of sizes 40% up
to 4002, again also with the use of Muca simulations covering however a
smaller m-interval in vicinity of the condensation phase transition.

5.1. Shape Transitions

In order to study the droplet shape transitions on the torus and on SH
lattices in detail we consider the constraint magnetization ensemble of the
Ising-model. Its partition function Z(m, L) is

Z(m,L)y=Y e "5 (m—Il/ Y s,»> (5.1)

conf. i

and we determine the expectation values of observables at fixed magneti-
zation m. Muca ensemble simulations are perfectly suited for the evaluation
of restricted expectation values. All one has to do is to average over opera-
tor values at m, if the magnetization m is visited in the Muca simulation.
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As we are dealing with droplets it is sensible to introduce the m-dependent

functions
/ m
0Q,(m)= _[2nV < 1 ——> (5.2
my

Qo(m)=g<1—%>, (5.3)

0

which for large system volume V" denote the classical surface and volume of
a circular droplet at fixed overall magnetization m. For each configuration
at m we evaluate connectivity components, i.e., clusters of spins. Nearest
neighbor spins belong to the same cluster, if they have the same value. The
size 2—the number of sites—is determined for each cluster and clusters are
sorted with respect to their size. The second largest cluster defines the
object of interest and corresponds to the minority phase droplet. Its expec-
tation value in the magnetization bin m is denoted {2 (m), the “volume”
of the minority phase droplet. It should be noted that <) (m) not neces-
sarily has to agree with Q,(m), if finite size effects are present.

For the toroidal lattice geometry (pbc) and for the minority phase
droplet a rectangular bounding box with linear sizes L, and L, is deter-
mined in such a way, that the droplet exactly fits into the box. From the
geometric numbers L,; and L, two geometric order parameters are formed,
namely

0,(m) = 8(L—max(L,, L,)) (5.4)
0,(m) = w (5.5)

Values for the operator O,(m) are zero and unity. At the position m,,5 of
the droplet strip transition we expect to find a finite size rounded jump
of the expectation value <{O,(m)) from value zero to unity. The order
parameter O,(m) on the other hand has several discrete values in the
interval [0, 1]. One can construct a probability distribution function P(0,)
for the occurrence of values O, in the restricted partition function (5.1)
at m. If our classical arguments on the nature of the droplet to strip transi-
tion are correct, then one expects to find a double peaked distribution
function P(0,) in the vicinity of m,, ;s with a barrier, which is related to the
excess length. Susceptibilities C, (m) and C,(m) are defined by

Cy(m) = L0, (m) —<0,(m)})*> (5.6)
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Fig. 10. (a) Droplet to strip transition geometric order parameter 40O, (m)) and suscepti-
bility C,(m) for the torus with pbc; and (b) geometric order parameter {O;(m, N,)) on a
SH(26) lattice with N, =0,1,2,3 and N, =4. The 5 different N,-dependent curves have
maxima, which from the right to the left correspond to values N, =0, 1,2,3 and to N, =4.
Vertical lines denote classical shape transition points.

and similar for C,(m) with O,, where {-) again denotes the expectation
value at given m. These susceptibilitics show a finite size rounded peak at
the shape transition defining finite size shifted m,, s(L)-values.

For the minority droplet on SH lattices we define a geometric order
parameter sensitive to the number 7, of corners occupied by the droplet. At
magnetization m we count the number »r, and define

03(}7’1, Nc) zé(Nc_nc)9 (57)

which at given m receives unity contributions only if N, corners are
occupied. We expect, e.g., that expectation values <O;(m, 2)) yield non-
vanishing values {(O,(m, 2)> ~ 1 only, if the magnetization density m lies
in-between the 1/2 and 2/3 shape transition magnetization density values.
Data for the geometric order parameters <O, ) (m) on toroidal lattices and
data for <O;(m, N,)) with N, =0,..., 4 on a SH(26) lattice are displayed in
Figs. 10a and 10b.

The maximum positions of the susceptibility in Fig. 10a on toroidal lat-
tices define finite volume estimates of the magnetization density m,,s at
coexistence. Finite size correction are not particularly small and thus a care-
ful infinite volume extrapolation is needed. For every pair of values L and
mp,s(L) we calculate 0Q,(mp,5(L))/L and with the use of the extrapolation

092y(mps(L))/L=_[2n <1 ~Dois >+Ao/s () (5.8)
m L
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Fig. 11. (a) Fit to m,s on the torus. The function 0L, /L is evaluated at the measured finite
size shifted values of m,,s(L) and plotted as a function of L. The line corresponds to the exact
result, while the solid triangle corresponds to the infinite volume extrapolation. The curve
corresponds to the fit as explained in the text. (b) Fit to the three shape transition points on
SH(L) lattices. Here the function ,/Q,/V is evaluated at the measured finite size shifted
magnetization density values and plotted as a function of L. Again horizontal lines corre-
spond to droplet calculations, while curves correspond to fits explained in the text. Solid
symbols correspond to the infinite volume extrapolation.

mp,s is determined. We mention, that In(L)/L finite size corrections are
predicted by capillary wave fluctuation corrections to the droplet free
energy®*?” and by entropic terms. The fit in accord with (5.8) has a y3.
value 0.32 and results into a transition point at mj,; = 0.376(9), which
within error bars coincides with the exact result (3.3). The data and the fit
are displayed in Fig. 11a. A similar analysis based on C,(m) data yields the
determination m;,s = 0.360(10), which again agrees with the exact result.
Similar as in torus case we also calculate susceptibilities of the O, order
parameter on SH(L) lattices and determine finite size shifted shape transi-
tion points. The results are displayed in Fig. 11b as a function of L on
SH(L) lattices. In this case three different i = 1, 2, 3 infinite volume transi-
tion points are determined via the extrapolation

Qo(mi/i+1(L))_ 1 M1 1

We did not include a In(L)/L term in this Ansatz, since capillary wave
corrections are the same on both sides of the transition and entropic terms
should be absent since the droplets center of mass is energetically pinned.
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Fig. 12. (a) Geometric order parameter O, distribution on the torus in vicinity of m,,s; and
(b) barrier values as a function of 1/L. The horizontal line denotes the classical droplet theory
result, the solid triangle the infinite volume extrapolation.

We obtain the values m,,, = 0.661(2) m,, m,;; = 0.342(3) m,, and m;,, =
0.305(3) m,, which within a systematic one percent relative error all agree
with the values of (3.9). The small discrepancy is presumably caused by the
isotropic surface free energy of our (approximative) droplet calculation for
SH lattices. The susceptibility C,(m) on toroidal lattices has its maximum
value at positions m,,5(L) and we can determine the probability distribu-
tion P(0,) of the order parameter O, there. The data are displayed in
Fig. 12a for L =20, 28, 36 and L = 44 lattices. One observes clear double
peaks with the peak for the strip concentrated in the single point at O, = 1.
In-between one finds states, which with increasing lattice size become less
an less probable. These suppressed states are the saddle point crystal shapes
of Fig. 4. A split of phase space into two disconnected regions with a free
energy barrier in-between proves the discontinuous nature of the droplet
strip transition and one can determine the barrier height. The distribution
functions have two maxima values P, ; and P, , and a minimum value
P,.. We form

AFdroplet = % ln(Pmax, IPmax,Z/PxZnin)9 (510)
which we measure in units of 4F,;, =2Lo, and the result is displayed in
Fig. 12b as a function of 1/L. A linear fit in L' (the curve in the figure)

results into the value

AFdroplet/AFstﬂp = 0133(6) (51 1)
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at a x5 value 0.40 for the fit. The free energy barrier measured in expo-
nential slowing down of Muca simulation (2.3) agrees with the free energy
barrier measured in the suppression of saddle point crystal shapes (5.11)
and with the result of classical droplet theory (3.4).

5.2. More Droplet Free Energy Corrections

A direct consequence of a discontinuous behavior of the restricted
partition function Z(m, L) at the droplet strip shape transition m,,,; on the
torus is again the validity of a superposition Ansatz®>

Z(m, L) = ¢ Fsuin(m, L)+ e~ Faropter(m, L)’ (5.12)
which we use to determine free energy corrections. If we define the quantity

_dm=mys L) (5.13)
Zm=0,L)

we observe, that classical bulk and surface free energy contributions pro-
portional to L? and L cancel in F,y,(m =0, L) — F, o (m = my s, L). Note
that the classical surface contributions to the free energy of a strip state at
m = 0 equal those at m = m,,,; and in addition classical surface portions of
F,, equal those of Fy,, . at m = my,s. We obtain the representation

X — eGslrip(m =0, L)—Garoplet(m =mp/s, L) (5‘ 14)

where the L-dependence of the function G at most is of the order o(L) and
possibly contains the whole set of finite size corrections to strip and droplet
states.

One of the quantities, which in the Muca simulation is determined,
is the magnetization probability P,(M). It counts the probability to find
magnetization M in the unconstrained Ising model and is proportional
to the constraint partition function P,(M =mV)oc Z(m, L). The value
P,(M =0) is easily measured at the magnetization bin M =0, while
Z(m=mp,s, L) with m;,; = 0.36974... is interpolated from data at magne-
tization bins closest to the value V'my, 5. Figure 13 displays the data for X
as a function of L. Right at the crystal shape transition and with increasing
lattice size droplet states relative to strips turn out to be more and more
probable. For large systems the data can be fitted with a power law in L
(the solid symbols in the figure)

X = A, L (5.15)
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Fig. 13. X values as defined in (5.13) as a function of L and fit as explained in the text.

and at a y3 value of 0.12 we obtain with A4, = 1.4(4) an exponent value
of a=0.44(8). Such finite size effects do not have their origin in Gibbs—
Thomson corrections but either are generated by capillary wave fluctuation
corrections—or by the count of strip and droplet states with respect to
translations. At zero temperature each translational degree of freedom
reduces the free energy by a term —In(L) and for finite temperature, each
fluctuating surface contributes +3In(L) via the capillary wave expansion.
Our theoretical prediction for « therefore is a = —1+2(})+2—1=3/2, if
translational degeneracies are counted—or a = 2(%)—%= 1/2, if tempera-
ture lifts degeneracies. The measured value is consistent with one half and
thus temperature is too high for a ‘“‘naive” zero temperature count of
degeneracies. Note, that two independent surface strings were assumed for
the strip and one for the droplet.

To probe free energies further, we introduce the discrete m partition
function derivative

InZm+4,,/V,L)—In Z(m, L)

A, InZ:= R
(4 /V)

(5.16)

which for small 4,, is proportional to %lm,. Thus 4,, In Z/L? can be
interpreted as a magnetic field® or as a chemical potential® in the lattice
gas interpretation. We have chosen a suitable value 4,, =20 and the
measured Monte Carlo data are displayed in Figs. 14a and 14b for
m-values in vicinity of m =my,; in (a) and for m values in the droplet
phase in (b). Similar data for the 2D Ising model at temperature 7" = 0.87,
presented in Fig. 10 of ref. 9, also showed the presence of the strongly
rounded stripe droplet transition, without attempting a quantitative fit of
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Fig. 14. Finite size rounding of the discrete derivative (4,, In Z)/L in vicinity of the crystal
shape transition (a) and in the droplet phase (b). For reasons of clarity we only present data
for two lattice sizes, 20> and 40°. The curves labeled “c” in the figures exactly match the
measured data (circles) and correspond to theoretical predictions for droplet and strip free
energies. The data denoted by crosses in (b) are results from a simulation with a modified
partition function (one spin is fixed to —1) and agree with curves labeled “b.” These are based
on the droplet free energy without logarithmic phase space factor in the droplet volume.

the data. For reasons of clarity we only present results for two lattices,
202 and 407 in size. The data, the circles in the figures, can be compared to
several finite size rounding predictions (the curves in the figures), which are
based on the superposition Ansatz (5.12). The infinite volume prediction,
which is labeled “a,” jumps at m,,,s from the value zero (strip phase) to a
finite value (gap) and in the droplet phase follows the classical result (3.1).
The curves labeled “b” in the figure correspond to finite size rounding in
accord with (5.12) and with free energy functions

Foa = 20, L+In(L) (5.17)
Firoper = 0 /AT + ¢,V Amr +35 In(0R) (5.18)

including classical terms as well as capillary wave fluctuations corrections.
As can be noted, the presence of further correction terms is suggested.

The translational invariance of a droplet of — spins floating in a
background of + spins can easily be broken, if one spin of the partition
function Zj,,, is fixed to the value —1, which in consequence lowers the
partition function by a factor f: Zg. oin = fZuoper With f < 1. At zero
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temperature one finds = Q/V and thus a “microcanonical droplet phase
space volume” correction to the droplet free energy of the form

- Q
Faroptet = Faropie +100 <7> (5.19)

quite similar to the microcanonical phase space volume of gases, is pre-
dicted. Adding this term to the droplet free energy in the droplet phase
moves curves labeled “b” to curves labeled “c” in Fig. 14b, which exactly
reproduce the data. One can also do a 51mulat10n in the modified theory,
which differs from the original one by the fixation of one arbitrary single
spin to the value —1, which never is updated. The crosses of Fig. 14b cor-
respond to data from such a simulation and as can be seen: they come to
lie on the curves labeled “b,” the free energy form without logarithmic
phase space factor in the droplet volume.

It is interesting to ask the non-trivial question, whether similar phase
space corrections contribute to the strip free energy. Strips are separated
from droplets by barriers and thus the full occupancy of phase space (with
logarithmic phase space factor in the droplet volume) may never be
reached. A situation like this can be termed: spontaneous breaking of
translational invariance for strip states, which according to our findings
actually is realized in the f = 0.7 2D Ising model. The curves labeled (c) of
Fig. 14a have been calculated with the droplet free energy Fdroplet and with

Fyip = Fyip —1In(2) (5.20)
and coincide exactly with the data. The strip free energy lacks logarithmic
phase space factors, which are inconsistent with the measurement and we
have included a constant correction term. Each droplet at the crystal phase
transition tunnels into either one of two possible different strip configura-
tions and thus the strip free energy is lowered by a term —In(2).

Droplet and strip free energies of Egs. (5.19) and (5.20) can be used to
determine the interface tension g, from the finite size rounding of the free
energy at the crystal shape transition. If for practical purposes we approx-
imate the droplet free energy by

Q
deplet~0690(m)+ago( )2+ln< > (5.21)

we obtain with Eq. (5.12) and with In Z(m, L) =In P,(m)+ const at fixed
m, a four parameter representation of the free energy as a function of the
parameters d,, g, &gr, and const, which easily can be fitted. A typical set of
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Fig. 15. (a) Logarithmized magnetization density probability distribution data as a function
of mat B=0.5(T /T, = 0.88) on a 202 box and finite size rounding fit as explained in the text.
Data and the fitted curve lie on top of each other. The fitted infinite volume interface tension
0, is displayed in (b) as a function of . The curve in (b) corresponds to the exact result.

data for the logarithmized free energy at = 0.5 on a 20? box is displayed
in Fig. 15a and the fit for values m < 0.8m, (droplet and strip phases) lies
right on top of the data. Figure 15b displays the interface tension g, as
determined from rather small boxes as a function of f in comparison to the
exact result, the curve in the figure. The agreement is excellent demonstrat-
ing, that finite size corrections of the free energy are faithfully represented.

5.3. Condensation Phase Transition

The phase transition of an extensive minority droplet in the phase
separated phase space region into a gas of small droplets in the bulk phase
is studied on toroidal lattices. In order to provide an overview over the
data we display in Fig. 16 the (logarithmized) probability distribution
P;(m) of the magnetization density—the constraint partition function
Z(m, L)—as a function of m in vicinity of Onsagers magnetization density
value m,. A finite size rounded cusp structure is visible for values of m
slightly below m, and corresponds to the position of the condensation
phase transition m_,4(L). The data are obtained on 402 up to 400 boxes
with the help of Muca simulations, which quite similar to simulations with
the Wang-Landau algorithm (see Section 2) also suffer from exponential
down and in fact: it would be quite time consuming to obtain data of
comparable statistical quality for a 1000* box.
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Fig. 16. Logarithmized magnetization density probability distribution functions P,(m) on
toroidal L? boxes at = 0.7 for the 2D Ising model. The maxima are normalized to values
unity in P,(m). One observes almost Gaussian fluctuations in vicinity of m,. Once one
approaches the two phase separated phase space region, a finite size rounded cusp structure
appears, which corresponds to the condensation phase transition.

The expectation value for the size of the minority droplet () (m) is
displayed in Fig. 17. From the peak positions of the Q2 susceptibility (not
displayed in a figure) we determine finite size shifted condensation point
magnetization values m,,,(L) and calculate the shift due to the finite
system size Am, 4 (L) = my—m,,q(L). The shift is displayed in Fig. 18 in a
double logarithmic scale as a function of L. Numerical values are contained
in Table I. The condensation point shift of Fig. 18 contains a straight line,
which corresponds to the theoretical prediction of classical droplet theory
with Gibbs-Thomson corrections (4.7). While finite size corrections to the

<Q>/|_2
I I
.012F —
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o —_— ]

99 o

Fig. 17. Expectation values {Q) (mm)/L* for the minority droplet size density in vicinity of
the condensation point phase transition for 402 up to 400 boxes. The infinite volume predic-
tion (1—m/m,)/2 corresponds to the dashed diagonal straight line.
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Fig. 18. Condensation point phase transition transition points at f#=0.7 in the 2D Ising
model. The straight line corresponds to the theoretical prediction, including Gibbs—Thomson
corrections. The curve corresponds to a fit to Eq. (5.24) as explained in the text.

theory on small boxes are large, it appears perfectly possible, that the data
(the solid circles in the figure) approach the theoretical prediction on large
boxes, i.e., for large droplets. Additional finite size corrections are caused
by sub-leading free energy contributions and quite similar to the discussion
of Section 5.2, we compare in Fig. 19 data for the discrete derivative
4,,In Z on 200? and 400* boxes with finite size rounding theory, as pre-
dicted by the superposition Ansatz (4.2). Similar Monte-Carlo data for
systems of smaller linear extent were shown in Fig. 10 of ref. 9 for the Ising
model in D=2 and in Figs. 6 and 7 of ref. 8 for D = 3. The onset of the

Table I. Measured Observables for the 2D Ising Model Droplet Condensation Phase
Transition at $=0.7. The Lowest Line Contains the Infinite Volume Theoretical
Predictions of Classical Droplet Theory with Gibbs-Thomson Corrections

L Amcond QL')CC /112/3 QCXC Q BCXC/G. vV 47190)“)

40 0.0376(12) - - - -
50 0.02936(80) — - - —
60 0.02405(55) — - - -
70 0.01995(40) — — — —
80  0.01766(31) - - - —
90  0.01559(24) — . .

100 0.01396(20) 0.0976(8) 45.3(4) 1.555(25) 0.013(2)

200 0.007762(50) 0.0878(5) 102.7(6) 1.526(12) 0.045(4)
400 0.004575(12) 0.0825(9) 243.4(6) 1.518(16) 0.085(4)

o 0. 0.07977... © 1.5 0.17404...




2D Crystal Shapes, Droplet Condensation, and Exponential Slowing Down 75

(A 1nZ]/L
0T T T

L= . “\ -

AN
i Y \ |

7" 00g ), Y

P AN \
20 2002 J’fﬂ NN \ —

_ .

3
aN
o

_20 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I I%

.975 .98 .985 mo 99

Fig. 19. Finite size rounding of data for the discrete derivative (4,, In Z)/L as defined in
Eq. (5.16) for m values in vicinity of the condensation phase transition on two lattice sizes,
2007 and 400> The dashed curves correspond to finite size rounding predictions. Discrepan-
cies are observed for bulk states slightly above the finite system phase transitions. The effect is
due to the second order Ginzburg-Landau free energy expansion.

same singularity as displayed in Fig. 19 is clearly visible in those data,
despite of the presence of strong finite-size rounding. The Ansatz now uses
the precisely known droplet free energy of (5.19) and the bulk free energy
of (4.6). The dashed lines of the figure do correspond to finite size rounding
predictions. It is evident, that the second order expansion of the Ginzburg—
Landau free energy is not precise enough. The calculation of coefficients c,

o0

U (m) =}, c,(m—my)" (5:22)

n=2

of an polynomial expansion for the constraint effective potential Uy (m)
. 1
Uy (m) = lim 1z In Z(m, L) (5.23)
L—-ow

in higher powers of m—m,, could provide a better bulk free energy form.
We will not however pursue this issue here.

We perform a three parameter fit to 4m_,4(L) data and parameterize
additional finite size corrections through a single power correction with a
free exponent value f

AMng (L) = Agona L™/*+ BL7P. (5.24)

The fit corresponds to the curve in Fig. 18 and at a y3, value of 0.25 we
obtain the fit parameters B =23(9), f=1.93(11), and 4,4 = 0.237(3).



76 Neuhaus and Hager

The fitted value for A,y perfectly agrees with the theoretical prediction
Agong = 0.23697... (4.8), which at the condensation phase transition yields
support for the validity of classical droplet theory and the presence of
Gibbs-Thomson corrections for large droplets.

A somewhat more stringent test of the presence of Gibbs-Thomson
corrections can be devised, if at the condensation phase transition the ratio
QO of (4.16) is calculated. For large droplets one expects, that Q equals
Q =3/2. For magnetization values at—or close to—the condensation
transition, we determine the probability distribution P,(2) for the
occurrence of a minority droplet of size 2 in the magnetization constraint
partition function at m and tune the magnetization values to the point,
where finite system double peaked probability distributions have equal
height. The result P,(R) is displayed in Fig. 20 as a function of Q/L*" for
boxes 1002, 2002, and 4002.

Our numerical simulation demonstrates the existence of double peaks
in P, (). There also exists a barrier for states in-between, which increases
with increasing droplet size. These findings provide numerical evidence for
the fact, that the droplet condensation phase transition of the 2D Ising
model is of discontinuous nature. Upon fitting Gaussians to the right hand
side peaks of Fig. 20 we determine values for the coexisting droplets size
Q..., which are contained in rows three and four of Table I. Values for the
ratio Q are given in the fifth row of Table I. On the 400* box we find
Q = 1.518(16), which indeed is very close to Q =3/2 and thus again pro-
vides solid support for the asymptotic correctness of classical droplet
theory and the presence of Gibbs—Thomson corrections.

P.(Q)

L 4002 -

0 1

Q/|_4/3

Fig. 20. Probability distributions P,(£2) of the minority droplet size at the condensation
phase transition. The vertical line corresponds to the “gap” prediction of classical droplet
theory with Gibbs-Thomson corrections.
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A very interesting quantity is the nucleation barrier B,,, which at
the condensation phase transition determines the suppression of states
in-between the equilibrium minority droplet—and the gas of small droplets
in the bulk phase. At equal height of the probability distribution B, can
be estimated through

P,
max .2
P (5:25)

min

B,

nucl ~ hl
where values P,,, and P,;, denote maxima and minima of P,(£). The last
row of Table I contains B,,, values, which are given in units of the droplet

surface free energy o ./4nQ,... The data exhibit large finite size effects
and most likely one needs much larger droplets in order to draw definite
conclusions. On the 400% box we find a barrier, which is smaller by a factor
of 1/2 than the theoretical prediction (4.12). Chances thus are high,
that the condensation of large droplets proceeds within Gibbs—Thomson
corrected classical droplet theory through the formation of intermediate
saddle point configurations, which are classical in nature also.
The grand-canonical droplet model of refs. 18 and 19 predicts

(d—1)é

d
. = > .
2 [ S ] i>2, (5.26)

for the volume Q_;, of the instable critical droplet as a function of the
ordering field 4. Taking into account that the the surface tension & =

/4rn g of refs. 18 and 19 differs from ours by a factor /47 one obtains

7o’

»t = ——
N dmih?

o (5.27)

in d=2. Using Eq. (4.11) and Am=h/2c, we compare Q_;, with the
volume of the equilibrium droplet at the condensation phase transition

Al 4 no?
o —_ Aem 5.28
e 3m0 Amcz:ond 4mgh§ond ’ ( )

which has the same field dependence as (5.27). 2., is a factor nine times
larger than Q_;. As one can see in Fig. 20 this is in accordance with our
simulations. The droplet volume ratios of the stable droplet at coexistence
over the critical droplet at the saddle point approximately have values 2, 3,
and 4 for the considered lattice sizes. It is very well possible, that these
volume ratios approach the predicted value 9 in the infinite volume limit.
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Finally we want to discuss how the free energy F, =In P,(M) in
general and the observed transitions in particular affect the dynamics of the
decay of a metastable state. As it stands F(L) describes the equilibrium
state for conserved order parameter m. It tells us for example whether
adatoms with a given density Am on a surface of size L? form a large single
crystal island or a homogenous adatom gas. For systems with conserved
order parameter, like binary alloys the typical experimental setting is a
rapid quench from a uniform state at high temperature into the two phase
region, followed by nucleation of droplets or spinodal decomposition. In
magnetic switching experiments® a system with a non-conserved order
parameter is driven from one equilibrium bulk state to the other by an
external magnetic field 2 and pending on the field strength one observes
two different tunneling regimes: In the stochastic regime at small fields
tunneling proceeds via the nucleation of a single droplet and as the process
is rare one observes large fluctuations in tunneling times, if the experiment
is repeated many times. At large fields multi-droplet states dominate the
intermediate configurations of the early tunneling process. The multi-
droplet nature of the tunneling in this case reduces fluctuations of tunnel-
ing times. The crossover region in-between both regimes was called the
dynamic spinodal.®”

The decay of supersaturated bulk states in any case proceeds via the
formation of a single droplet—or via an ensemble of several critical
droplets. Let us consider a subsystem of supersaturated matter of linear
extent ¢ and volume &2 at fixed finite A, which is embedded into a larger
system of finite linear size L and volume L2 The properties of critical
droplets in vicinity of the condensation phase transition determine certain
aspects of the tunneling processes, which can be activated within the sub-
system. Most notably and due to the existence of the condensation phase
transition we observe, that volumes of critical droplets £2; cannot be arbi-
trary small for given subsystem size £. Their values are bounded from
below through a ¢ dependent bound, which is saturated at the condensa-
tion phase transition

PR
2Tm, A

cond

Q g4 (5.29)

with A4 .4 as given in Eq. (4.8). The volume of critical droplets according to
Eq. (5.27) is proportional to 4272 and can have any value. At small values
of h the critical droplet volume is large and the inequality of Eq. (5.29)
is satisfied even for values £ = L. In this region stochastic tunneling takes
place with the nucleation of a single droplet. On the other hand, at large
values of A the critical droplet volume is small and the inequality of
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Eq. (5.29) only is satisfied if £ < L. Consequently tunneling proceeds within
many subsystems of size &, i.e., multi-droplet states are encountered. For
finite size systems with linear extent L and volume L? we determine the
magnetic field /,g, where the crossover from single- to multi-droplet decay
takes place, as

hps =2¢3Aong L3 (5.30)

and for values 4 > &, we find the subsystem linear size

(5.31)

é(h) — |: 262Acond :|3/2

h

with &(h=hpg) = L. The interplay of the condensation phase transition
with the dynamic spinodal®” was already noted in ref. 9. These authors
argued however in favor of a logarithmic L—dependency (In L/L)? instead
of the L™?/* dependence of the critical field /4,¢. Recent rigorous argu-
ments®”“Y on the location of the condensation phase transition exclude
such leading logarithmic corrections in the finite size behavior of F;(m).
Our simulation reveals sizable sub-leading finite size corrections for the
considered lattice sizes, which deserve further studies. With the assumption,
that the multi-droplet physics necessary to derive the location of the
dynamic spinodal is already contained in the free energy landscape of the
restricted magnetization equilibrium partition function, logarithmic terms
should be absent in the leading L dependence of /,g. Further efforts are
necessary to check, whether this assumption holds true or wether the
dynamical effects invoked in ref. 39 change the L dependence of /.

6. CONCLUSION AND OUTLOOK

The constraint magnetization partition function of the 2D Ising
model, which we studied at inverse temperature = 0.7, hosts a variety of
thermodynamic singularities, which qualify as genuine first-order phase
transitions with free energy barriers, that diverge in the thermodynamic
limit. The phase space on the torus splits into five disconnected sectors:
bulk, droplet, and strip phases (+ /— symmetric states counted separately)
and, on cube-surface lattices the number of phases is even higher, nine in
total. On toroidal and cube-surface lattices we observe shape transitions,
which strongly depend on the choice of the lattice manifold and, which for
finite systems only can be avoided, if the model could be formulated on a
perfect sphere. Since no such regularization is known, we are faced with
discontinuous behavior for certain quantities and with free energy barriers,
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which are proportional to the system size L. The barrier value and the
position of the crystal shape transition on the torus (from a droplet to a
strip) and the positions and barriers of the “corner occupying” droplet
shape transitions on the cube-surface, all are very well described by a clas-
sical droplet description.

The algorithmic performance of multicanonical ensemble simulations
suffers from the existence of such shape transitions. Barriers at the discon-
tinuous phase transitions can not be removed and result into exponential
slowing down. The earlier general conjecture of random walk behavior for
multicanonical ensemble simulations in applications to first-order phase
transitions is falsified for a special case. This interesting algorithmic fact
untill now has escaped detection, just because free energy barriers in most
applications of multicanonical ensemble simulations—though present—
were not particularly large. There is no doubt, that energy driven first-
order phase transitions on toroidal lattices with periodic boundaries
possess similar crystal shape transitions, e.g., from a droplet to a strip. In
higher dimensions than d =2, e.g., in d = 3, one faces the additional fact,
that two phase separation on toroidal boxes in intermediate stages also
proceeds with the formation of cylinders, which adds additional shape
transitions to the scenario. We expect, that the performance degradation,
which is observed in multicanonical ensemble simulations, is a general
property of broad histogram sampling methods for phase separated
systems and, that Wang-Landau density of states updating also is affected.

For toroidal lattices we have obtained a precise finite size parameteri-
zation for droplet and strip free energies—and for the finite size energy
rounding at the crystal shape transition. Our finding predicts the existence
of logarithmic phase space factors in the droplet volume, which in addition
to Gibbs-Thomson and capillary wave fluctuation corrections, contribute
to the droplet free energy. Such terms reflect the fact, that droplets at fixed
magnetization may fluctuate to any spatial position and, for the considered
droplet sizes at the crystal shape transition these corrections are actually
larger, than, e.g., Gibbs—-Thomson corrections. A Tolman correction to the
classical droplet free energy could not be observed, confirming the predic-
tion of ref. 30 that the amplitude of this correction vanished for systems
like the Ising model, which are symmetric under the interchange of the two
phases. We have conjectured, that translational invariance for strip states is
broken, because similar logarithmic phase space factors are absent for the
strip free energy. It would be quite interesting to study the dependence of
this effect on temperature and dimension.

The phase separated region of the 2D Ising model is bounded by a
condensation phase transition, which as we checked at f#=0.7 is of dis-
continuous nature. Within the scope of the present paper we worked out
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the consequences of a simple theoretical model in the one droplet sector,
which is based on classical droplet theory and Gibbs-Thomson corrections.
Gibbs-Thomson corrected classical droplet theory decomposes the free
energy into the classical contribution of the droplet, adding fluctuations
through the expansion of the Ginzburg-Landau free energy, which in this
paper was considered up to second order. This theory performs surprisingly
well for large droplets. The finite size condensation phase transition shift,
the gap in the minority droplet size, the ratio of the shift over the gap and
the nucleation barrier—all seem to approach the second order Ginzburg—
Landau free energy theoretical prediction. Future studies should answer the
important theoretical question, whether all of the observed corrections for
large, small and smallest droplets can be incorporated through a higher
order expansion of the Ginzburg-Landau free energy, which as already
mentioned requires precise knowledge on the shape of the constraint effec-
tive potential in vicinity of the bulk. We have also presented an argument
relating the condensation phase transition to the location of the dynamic
spinodal, which is of relevance for magnetic field switching experiments.
Thermodynamic singularities associated with the condensation of
droplets in models with phase separation are expected to exist in any
dimension—and also for temperature driven first-order phase transitions.
To our knowledge such transitions have not yet been studied with similar
methods in numerical simulations and—for most of the time—the effect
has plainly been overlooked. For purposes of illustration we display in
Fig. 21 the energy probability distribution function P(E) on a 70% box
from ref. 41 in the two-dimensional ¢ = 20 Potts model at the transition
temperature. The conjectured positions of two asymmetric condensation

1nP(E)

-20}

Fig. 21. Probability distribution P(E) for the energy in the 2D g = 20 Potts model on a 70>
box. The conjectured positions of condensation phase transitions are indicated by finite size
rounded cusps.
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phase transitions again is indicated by finite size rounded cusps. The ther-
modynamic properties of these transitions, like their order and their nature
in terms of droplet and fluctuation degrees have not yet been studied,
neither in dimension two, nor in higher dimensions.

Note Added in Proof. After completion of this work we became
aware of recent work on details of the condensation transition by K. Binder
(Physica A 319:99 (2003), cond-mat/0303651), K. Binder and coworkers
(cond-mat/0303642) and by M. Biskup, L. Chayes, and R. Kotecky (cond-
mat/0302373, math.PR /0212300, math-ph/0302031).
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